Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.054
Filtrar
1.
Int J Biol Macromol ; : 131844, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663708

RESUMO

Starch is a key element in fried potato crisps, however, the effect of starch granule size on oil absorption of the product have yet to be fully investigated. The study explored the impact of starch granule size on both the dough characteristics and oil absorption in potato crisps. The dough composed of small-sized potato granules showed more compact and uniform network system. Additionally, X-ray Microscope analysis showed that potato crisps prepared with small-sized potato granules had limited matrix expansion and fewer pores, cracks, and voids. The small-sized potato and small-sized wheat granule addition crisps displayed a significantly greater average cell thickness (52.05 and 53.44 µm) than other samples, while exhibiting notably lower average porosity (61.37 % and 60.28 %) compared to other samples. Results revealed that potato crisps with medium and small potato granules had 12.91 % and 21.92 % lower oil content than those containing large potato starch. Potato crisps with B-type wheat starch showed 16.36 % less oil absorption than those with A-type wheat starch. Small-sized starches significantly influence the dough structure and contribute to the reduction of oil absorption in fried products. The generated insights may provide monitoring indexes for cultivating potato varieties with low oil absorption.

2.
Food Sci Biotechnol ; 33(7): 1615-1621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623421

RESUMO

ß-Glucan is an immunoenhancing agent whose biological activities are linked to molecular structure. On that basis, the polysaccharide can be physiochemically modified to produce valuable functional materials. This study investigated the physical properties and immunostimulatory activity of modified ß-glucan. Alkali-treated ß-glucan had a distinct shape and smaller particle size than untreated ß-glucan. The reduced particle size was conducive to the stability of the suspension because the ß-glucan appeared to be completely dissolved by this treatment, forming an amorphous mass. Furthermore, alkali treatment improved the immunostimulating activity of ß-glucan, whereas exposure of macrophages to heat-treated ß-glucan decreased their immune activity. ß-Glucan with reduced particle size by wet-grinding also displayed immunomodulatory activities. These results suggested that the particle size of ß-glucan is a key factor in ß-glucan-induced immune responses of macrophages. Thus, the modification of the ß-glucan particle size provides new opportunities for developing immunoenhancing nutraceuticals or pharmacological therapies in the future.

3.
J Chromatogr A ; 1722: 464891, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608368

RESUMO

Particle size is a critical parameter of chromatographic resins that significantly affects protein separation. In this study, effects of resin particle sizes (31.26 µm, 59.85 µm and 85.22 µm named Aga-31, Aga-60 and Aga-85, respectively) on antibody adsorption capacity and separation performance of a hybrid biomimetic ligand were evaluated. Their performance was investigated through static adsorption and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC). The static adsorption results revealed that the Qmax for hIgG was 152 mg/g resin with Aga-31, 151 mg/g resin with Aga-60, and 125 mg/g resin with Aga-85. Moreover, the DBC at 10% breakthrough for hIgG with a residence time of 2 min was determined to be 49.4 mg/mL for Aga-31, 45.9 mg/mL for Aga-60, and 38.9 mg/mL for Aga-85. The resins with smaller particle sizes exhibited significantly higher capacity compared to typical commercial agarose resins and a Protein A resin (MabSelect SuRe). Furthermore, the Aga-31 resin with the hybrid biomimetic ligand demonstrated exceptional performance in terms of IgG purity (>98%) and recovery (>96%) after undergoing 20 separation cycles from CHO cell supernatant. These findings are helpful in further chromatographic resin design for the industrial application of antibody separation and purification.


Assuntos
Imunoglobulina G , Tamanho da Partícula , Adsorção , Ligantes , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Cromatografia de Afinidade/métodos , Materiais Biomiméticos/química , Animais , Biomimética/métodos , Cricetulus , Células CHO
4.
Environ Int ; 187: 108658, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38640612

RESUMO

During the unprecedented COVID-19 city lockdown, a unique opportunity arose to dissect the intricate dynamics of urban air quality, focusing on ultrafine particles (UFPs) and volatile organic compounds (VOCs). This study delves into the nuanced interplay between traffic patterns and UFP emissions in a subtropical urban setting during the spring-summer transition of 2021. Leveraging meticulous roadside measurements near a traffic nexus, our investigation unravels the intricate relationship between particle number size distribution (PNSD), VOCs mixing ratios, and detailed vehicle activity metrics. The soft lockdown era, marked by a 20-27% dip in overall traffic yet a surprising surge in early morning motorcycle activity, presented a natural experiment. We observed a consequential shift in the urban aerosol regime: the decrease in primary emissions from traffic substantially amplified the role of aged particles and secondary aerosols. This shift was particularly pronounced under stagnant atmospheric conditions, where reduced dilution exacerbated the influence of alternative emission sources, notably solvent evaporation, and was further accentuated with the resumption of normal traffic flows. A distinct seasonal trend emerged as warmer months approached, with aromatic VOCs such as toluene, ethylbenzene, and xylene not only increasing but also significantly contributing to more frequent particle growth events. These findings spotlight the criticality of targeted strategies at traffic hotspots, especially during periods susceptible to weak atmospheric dilution, to curb UFP and precursor emissions effectively. As we stand at the cusp of widespread vehicle electrification, this study underscores the imperative of a holistic approach to urban air quality management, embracing the complexities of primary emission reductions and the resultant shifts in atmospheric chemistry.

5.
Sci Rep ; 14(1): 7728, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565584

RESUMO

Ecofriendly and stable Fuel Microemulsions based on renewable components were prepared through solubilizing ethanol in diesel and waste cooking oil blend (4:1). New diquaternary ammonium ionic liquids (3a & 3b) were synthesized through a quaternization reaction of the synthesized dihaloester with diethyl ethanolamine tridecantrioate and triethyl amine tridecantrioate, respectively. The chemical structures were elucidated by NMR spectroscopy. It was observed from DLS analyses that the ethanol particles in all samples have sizes between 4.77 to 11.22 nm. The distribution becomes narrower with the decrease in the ionic liquid concentrations. The fuel properties fall within the ASTM D975 acceptable specifications and are close to the neat diesel properties. The Cetane index were 53 and 53.5, heating values were 38.5 and 38.5 MJ/kg, viscosities were 2.91 and 2.98 mm2/s, densities were 8.26 and 8.29 g/mL and flash points were 49 °C and 48 °C for 3a1 and 3b1 microemulsions, respectively. The particle sizes of samples were examined by DLS for 160 days and they were significantly stable. The amount of ethanol solubilized increases with the increase in the amount of the synthesized ionic liquids and cosurfactant. The combustion calculations pointed out that the microemulsions 3a1 and 3b1 need 13.07 kg air/kg fuel and 12.79 kg air/kg fuel, respectively, which are less than the air required to combust the pure diesel. According to theoretical combustion, using ionic liquids saves the air consumption required for combustion and reduces the quantities of combustion products. The prepared microemulsions were successfully used as a diesel substitute due to their improved combustion properties than pure diesel and low pollution levels.

6.
J Anim Sci Biotechnol ; 15(1): 52, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576049

RESUMO

BACKGROUND: Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy. Pelleting may also reduce particle size of grain, but it is not known if there are interactions between particle size reduction and pelleting. The objective of this experiment was to test the hypothesis that particle size reduction and pelleting, separately or in combination, increase N balance, apparent total tract digestibility (ATTD) of fiber and fat, and net energy (NE) in corn-soybean meal diets fed to group-housed pigs. METHODS: Six corn-soybean meal-based diets were used in a 3 × 2 factorial design with 3 particle sizes of corn (i.e., 700, 500, or 300 µm) and 2 diet forms (i.e., meal or pelleted). Pigs were allowed ad libitum access to feed and water. Twenty-four castrated male pigs (initial weight: 29.52 kg; standard diviation: 1.40) were allotted to the 6 diets using a 6 × 6 Latin square design with 6 calorimeter chambers (i.e., 4 pigs/chamber) and 6 periods. Oxygen consumption and CO2 and CH4 productions were measured during fed and fasting states and fecal and urine samples were collected. RESULTS: Regardless of particle size of corn, the ATTD of gross energy (GE), N, and acid-hydrolyzed ether extract (AEE), and the concentration of NE were greater (P < 0.05) in pelleted diets than in meal diets. Regardless of diet form, the ATTD of GE, N, and AEE, and the concentration of NE were increased (linear; P < 0.05) by reducing the particle size of corn, but the increase was greater in meal diets than in pelleted diets (interaction; P < 0.05). CONCLUSIONS: Both pelleting and reduction of corn particle size increased nutrient digestibility and NE, but increases were greater in meal diets than in pelleted diets.

7.
Pharm Res ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561579

RESUMO

PURPOSE: Products formulated for intramammary (IMM) infusion are intended for the delivery of therapeutic moieties directly into the udder through the teat canal to maximize drug exposure at the targeted clinical site, the mammary gland, with little to no systemic drug exposure. Currently, to our knowledge, there has been no in-vitro matrix system available to differentiate between IMM formulations. Our goal is to develop A custom tailored in-vitro "Matrix of Chemistry, Manufacturing and Control" (MoCMC) System to be a promising future tool for identifying inequivalent IMM formulations. MoCMC can detect inter and intra batch variabilities, thereby identifying potential generics versus brand product similarities or differences with a single numeric value and a specific & distinctive fingerprint. METHODS: The FDA-approved IMM formulation, SPECTRAMASTⓇ LC, was selected as the reference product for the MoCMC. Twelve in-house test formulations containing ceftiofur hydrochloride were formulated and characterized. The MoCMC was developed to include six input parameters and three output parameters. The MoCMC system was used to evaluate and compare SPECTRAMASTⓇ LC with its in-house formulations. RESULTS: Based on the MoCMC generated parameters, the distinctive fingerprints of MoCMC for each IMM formulations, and the statistical analyses of MCI and PPI values, in-house formulations, F-01 and F-02 showed consistency while the rest of in-house formulations (F-03-F-12) were significantly different as compared to SPECTRAMASTⓇ LC. CONCLUSION: This research showed that the MoCMC approach can be used as a tool for intra batch variabilities, generics versus brand products comparisons, post-approval formulations changes, manufacturing changes, and formulation variabilities.

8.
Proc Natl Acad Sci U S A ; 121(15): e2319127121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557191

RESUMO

Organic compounds can crystallize in different forms known as polymorphs. Discovery and control of polymorphism is crucial to the pharmaceutical industry since different polymorphs can have significantly different physical properties which impacts their utilization in drug delivery. Certain polymorphs have been reported to 'disappear' from the physical world, irreversibly converting to new ones. These unwanted polymorph conversions, initially prevented by slow nucleation kinetics, are eventually observed driven by significant gains in thermodynamic stabilities. The most infamous of these cases is that of the HIV drug ritonavir (RVR): Once its reluctant form was unwillingly nucleated for the first time, its desired form could no longer be produced with the same manufacturing process. Here we show that RVR's extraordinary disappearing polymorph as well as its reluctant form can be consistently produced by ball-milling under different environmental conditions. We demonstrate that the significant difference in stability between its polymorphs can be changed and reversed in the mill-a process we show is driven by crystal size as well as crystal shape and conformational effects. We also show that those effects can be controlled through careful design of milling conditions since they dictate the kinetics of crystal breakage, dissolution, and growth processes that eventually lead to steady-state crystal sizes and shapes in the mill. This work highlights the huge potential of mechanochemistry in polymorph discovery of forms initially difficult to nucleate, recovery of disappearing polymorphs, and polymorph control of complex flexible drug compounds such as RVR.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38649610

RESUMO

Exposed soils associated with active construction sites provide opportunities for erosion and sediment transport during storm events, introducing risks associated with excess sediment to downstream infrastructure and aquatic biota. A better understanding of the drivers of sediment transport in construction site runoff is needed to improve the design and performance of erosion and sediment control measures (ESCMs). Eleven monitoring locations on 3 active road construction sites in central Ohio were established to characterize runoff quality from points of concentrated flow during storm events. Grab samples were analyzed for total suspended solids (TSS), turbidity, and particle size distribution (PSD). Median TSS concentrations and turbidity levels across all samples were 626 mg/L (range 25-28,600 mg/L) and 759 NTU (range 22-33,000 NTU), respectively. The median PSD corresponded to a silty clay loam, mirroring the soil texture of much of Ohio's subsoils. TSS concentrations and turbidity were significantly positively correlated with the rainfall intensity 10 min prior to sample collection, suggesting that higher flow rates created greater shear stress on bare soil which resulted in more erosion. Conversely, rainfall duration was negatively correlated with particle size, indicating that prolonged moisture from rainfall promoted the dispersion of soil aggregates which mobilized smaller particles. Multivariable linear regression models revealed that higher rainfall intensities corresponded to higher turbidity values, while higher TSS concentrations were associated with higher rainfall intensities, depths, and durations. Results from this study highlight the importance of reducing raindrop impact and subsequent shear stress applied by concentrated flows through the use of ESCMs to limit sediment export from construction sites.

10.
Mar Pollut Bull ; 202: 116365, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608430

RESUMO

Plastic pollution threatens many organisms around the world. In particular, the northern fulmar, Fulmarus glacialis, is known to ingest high quantities of plastics. Since data are sparse in the Eurasian Arctic, we investigated plastic burdens in the stomachs of fulmar fledglings from Kongsfjorden, Svalbard. Fifteen birds were collected and only particles larger than 1 mm were extracted, characterised and analysed with Fourier Transform InfraRed spectroscopy. All birds ingested plastic. In total, 683 plastic particles were found, with an average of 46 ± 40 SD items per bird. The most common shape, colour and polymer were hard fragment, white, and polyethylene, respectively. Microplastics (< 5 mm) were slightly more represented than mesoplastics (> 5 mm). This study confirms high numbers of ingested plastics in fulmar fledglings from Svalbard and suggests that fulmar fledglings may be suitable for temporal monitoring of plastic pollution, avoiding potential biases caused by age composition or breeding state.

11.
Sci Rep ; 14(1): 8864, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632337

RESUMO

In this study, fast-growing poplar reclaimed from abandoned homestead in Xixian New District, Xi'an City, Shaanxi Province, was used as the research object to explore the multi-fractal characteristics of soil particle size distribution under different management modes of abandoned land (control), irrigation, fertilizer irrigation and mixed fertilizer irrigation. The results showed that the mean values of soil clay, silt and sand in abandoned land were 14.58%, 81.21% and 4.22% respectively, 14.08%, 79.92% and 5.99% under irrigation, 15.17%, 81.19% and 3.64% under fertilizer irrigation, and 16.75%, 80.20% and 3.05% in mixed fertilizer treatment. From 40 cm, with increasing soil depth, soil clay particles increase under irrigation, fertilizer irrigation, and mixed fertilizer irrigation modes. The single fractal dimension of soil particle size distribution (D) in each treatment ranges from 2.721 to 2.808. At 60-100 cm, D shows fertilizer irrigation > mixed fertilizer irrigation > irrigation > abandoned land, indicating that fertilization and irrigation can increase the fine-grained matter of deep soil particles and reduce soil roughness. Compared with abandoned land, under irrigation, fertilizer irrigation and mixed fertilizer modes the capacity dimension (D0), entropy dimension (D1), correlation dimension(D2), shape characteristics of the multifractal spectrum (Δf) and overall inhomogeneity of the soil particle size distribution (D0-D10) indicate an uneven distribution of soil particle size; fractal structure characteristics of soil (D-10-D0) indicate a simplified soil structure, and degree of dispersion of soil particle size distribution (D1/D0) indicates that soil particle size is distributed in dense areas. Pearson correlation analysis showed that D was significantly correlated with clay, sand, D0-D10, soil organic matter (SOM) and soil available phosphorus (SAP) (P < 0.05). Stepwise regression analysis showed that clay was the main controlling factor of D and D0-D10 changes. The research results can provide some potential indicators for the quality evaluation of abandoned homestead reclamation.

12.
Theranostics ; 14(6): 2637-2655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646642

RESUMO

Rationale: To meet the need of long-acting analgesia in postoperative pain management, slow-releasing formulations of local anesthetics (LAs) have been extensively investigated. However, challenges still remain in obtaining such formulations in a facile and cost-effective way, and a mechanism for controlling the release rate to achieve an optimal duration is still missing. Methods: In this study, nanosheets formed by a self-assembling peptide were used to encapsulate ropivacaine in a soft-coating manner. By adjusting the ratio between the peptide and ropivacaine, ropivacaine particles with different size were prepared. Releasing profile of particles with different size were studied in vitro and in vivo. The influence of particle size and ropivacaine concentration on effective duration and toxicity were evaluated in rat models. Results: Our results showed that drug release rate became slower as the particle size increased, with particles of medium size (2.96 ± 0.04 µm) exhibiting a moderate release rate and generating an optimal anesthetic duration. Based on this size, formulations at different ropivacaine concentrations generated anesthetic effect with different durations in rat sciatic nerve block model, with the 6% formulation generated anesthetic duration of over 35 h. Long-acting analgesia up to 48 h of this formulation was also confirmed in a rat total knee arthroplasty model. Conclusion: This study provided a facile strategy to prepare LA particles of different size and revealed the relationship between particle size, release rate and anesthetic duration, which provided both technical and theoretical supports for developing long-acting LA formulations with promising clinical application.


Assuntos
Anestésicos Locais , Nanopartículas , Tamanho da Partícula , Peptídeos , Ropivacaina , Ropivacaina/administração & dosagem , Ropivacaina/química , Ropivacaina/farmacocinética , Animais , Anestésicos Locais/administração & dosagem , Anestésicos Locais/química , Ratos , Nanopartículas/química , Peptídeos/química , Peptídeos/administração & dosagem , Dor Pós-Operatória/tratamento farmacológico , Ratos Sprague-Dawley , Masculino , Analgesia/métodos , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Amidas/química , Amidas/administração & dosagem , Nervo Isquiático/efeitos dos fármacos , Modelos Animais de Doenças
13.
Front Public Health ; 12: 1371656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651126

RESUMO

Given the dense population on university campuses, indoor and outdoor airborne bacterial contamination may lead to the rapid spread of diseases in a university environment. However, there are few studies of the characteristics of airborne and pathogenic bacterial communities in different sites on a university campus. In this study, we collected particulate matter samples from indoor and outdoor locations at a university in Bengbu City, Anhui Province, China, and analyzed the community characteristics of airborne and pathogenic bacteria using a high-throughput sequencing technique. The results showed that the composition of the dominant airborne and pathogenic bacterial communities was consistent among sites at the phylum and genus levels, with differences in their relative abundance. There were significant differences in the structure of the airborne and pathogenic bacterial communities between indoor and outdoor sites (p < 0.05). An analysis of similarities (ANOSIM) indicated that the structure of airborne bacterial communities in indoor sites was influenced by the room occupancy rate, ventilation conditions, and the extent of indoor furnishing (p < 0.05), while the structure of pathogenic bacterial communities was influenced by the number of individuals and spatial dimensions (p < 0.05). The impact of particle size on the structure of airborne and pathogenic bacterial communities was relatively minor. A total of 194 suspected pathogenic bacterial species were identified, accounting for 0.0001-1.3923% of the total airborne bacteria, all of which were conditional pathogens. Among them, Saccharopolyspora rectivirgula, Acinetobacter johnsonii, and Moraxella osloensis exhibited relatively high relative abundance, accounting for 24.40, 16.22, and 8.66% of the total pathogenic bacteria, respectively. Moreover, 18 emerging or re-emerging pathogenic bacterial species with significant implications for human health were identified, although their relative abundance was relatively low (0.5098%). The relative abundance of pathogenic bacteria in indoor environments was significantly higher than outdoors, with the laboratory and dormitory having the highest levels. The findings of this study provide valuable guidance for the prevention and control of airborne bacterial contamination and the associated health risks in both a campus environment and other public spaces with high occupancy rates.

14.
Materials (Basel) ; 17(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38591483

RESUMO

Over the past two decades, extensive research has been conducted to explore alternative supplementary cementitious materials (SCMs) in order to address the environmental concerns associated with the cement industry. Bricks, which are frequently preferred in the construction sector, generate a lot of waste during the production and demolition of existing buildings, requiring environmentally sustainable recycling practices. Therefore, many studies have been carried out in recent years on the use of brick waste as supplementary cementitious materials (SCMs) in cement mortar and concrete production. This critical review evaluates the impact of waste brick powder (WBP) on the mechanical and durability properties of mortar and concrete when used as a partial replacement for cement. It was observed that the properties of WBP-blended cement mortar or concrete depend on several factors, including WBP particle size, replacement ratio, pozzolanic activity, and mineralogical structure. The findings indicate that WBP with a particle size range of 100 µm to 25 µm, with a maximum cement replacement level of 10-20%, exhibits a positive impact on the compressive strength of both mortars and concretes. However, it is crucial to emphasize that a minimum curing duration of 28 days is imperative to facilitate the development of a pozzolanic reaction. This temporal requirement plays a vital role in realizing the optimal benefits of utilizing waste brick powder as a supplementary cementitious material in mortars and concretes.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38625553

RESUMO

The objective of this research was focused on the design and development of luliconazole-loaded polymeric micelle hydrogel (LUL-PM-CHG) using quality by design (QbD) principle to improve the penetration and retention of LUL in the skin. The optimization of the formulation involved the utilization of a Box-Behnken design with three factors and three levels. The impact of specific formulation variables, namely the ratio of poloxamer P123 and F127, sonication time, and the quantity of drug, was investigated in terms of particle size, micellar incorporation efficiency, and polydispersity index. The LUL-loaded P123/F127 mixed micelles involved the thin film hydration method for thin preparation. The characteristics of optimized formulation include a particle size of 226 ± 8.52 nm, a polydispersity index (PDI) of 0.153 ± 0.002, a zeta potential (ZP) of 30.15 ± 2.32 mV, and a micellar incorporation efficiency (MIE) of 88.38 ± 3.84%. In vitro release studies indicated a sustained release of LUL-PM-CHG for a duration of up to 8 h. The MIC, GI50, and GI90 of different formulations on Candida albicans were determined using both the microtiter broth dilution method and the plate method and showed that LUL-PM-CHG exhibited the highest antifungal activity compared to the other formulations, with MIC values of 3.25 ± 0.19 ng/mL, GI50 values of 37.11 ± 2.89, and GI90 values of 94.98 ± 3.41 The study also measured the % of inhibition activity and the generation of intracellular reactive oxygen species (ROS) using flow cytometry. LUL-PM-CHG showed the highest percentage of inhibition (75.5%) and ROS production (MFI-140951), indicating its enhanced activity compared to LUL-CHG and LUL. Fungal infection was induced in Wistar rats using immunosuppressant's treatment followed by exposure to C. albicans. Finally, in vivo fungal scaling and histopathological studies indicated a reduction in fungal infection in Wistar rat skin after treatment. The obtained results suggested that LUL-PM can serve as a promising formulation to enhance luliconazole antifungal activity and increase patient compliance.

16.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611796

RESUMO

The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol-1 can be attributed to the structural relaxation motions described in terms of the Tool-Narayanaswamy-Moynihan model. Whereas the bulk amorphous GSF is very stable, the presence of mechanical defects and micro-cracks results in partial crystallization initiated by the transition from the glassy to the under-cooled liquid state (at ~80 °C). A key aspect of this crystal growth mode is the presence of a sufficiently nucleated vicinity of the disrupted amorphous phase; the crystal growth itself is a rate-determining step. The main macroscopic (calorimetrically observed) crystallization process occurs in amorphous GSF at 115-135 °C. In both cases, the common polymorph I is dominantly formed. Whereas the macroscopic crystallization of coarse GSF powder exhibits similar activation energy (~235 kJ·mol-1) as that of microscopically observed growth in bulk material, the activation energy of the fine GSF powder macroscopic crystallization gradually changes (as temperature and/or heating rate increase) from the activation energy of microscopic surface growth (~105 kJ·mol-1) to that observed for the growth in bulk GSF. The macroscopic crystal growth kinetics can be accurately described in terms of the complex mechanism, utilizing two independent autocatalytic Sesták-Berggren processes. Thermal decomposition of GSF proceeds identically in N2 and in air atmospheres with the activation energy of ~105 kJ·mol-1. The coincidence of the GSF melting temperature and the onset of decomposition (both at 200 °C) indicates that evaporation may initiate or compete with the decomposition process.

17.
Materials (Basel) ; 17(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612106

RESUMO

The removal of pharmaceutically active compounds present in relatively low concentration in wastewater is critical. This is because they have a severe, negative impact on life and the environment. To address this issue, adsorption was used, which is an effective wastewater treatment method for removing substances found in low concentrations in water. This study compared the adsorption performance of active carbon to three biosorbents derived from Adansonia digitata shells. The adsorbents were prepared and characterized using TGA, SEM, EDX, and FTIR analyses and pHPZC. To better understand the adsorption process, equilibrium and reaction kinetics studies were conducted. The effect of contact time, initial phenobarbital concentration, adsorbent mass, and pH was investigated in static conditions. The adsorption results revealed that the biosorbent B3 has a higher affinity for the eliminated compound, with an equilibrium time of 60 min and an adsorption capacity of 47.08 mg/g at an initial concentration of 50 mg/L. The experimental data are consistent with Langmuir and Sips adsorption isotherm models, and with the pseudo-second order and Elovich models for kinetics description. This indicates strong interactions between the adsorbent materials and the pharmaceutical micropollutant. Based on these findings, it appears that, among the tested materials, B3 biosorbent is the most efficient for removing phenobarbital present in low concentrations in water.

18.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591471

RESUMO

A new type of poly-diamond plate without a catalyst was produced via the high-pressure high-temperature (HPHT) compression of diamond powders. The densification of diamond powders and sp3 to sp2 carbon on the surface under HPHT compression was investigated through the characterization of the microstructure, Raman spectroscopy analysis and electrical resistance measurement. The densification and sp3-sp2 transformation on the surface are mainly affected by the pressure, temperature and particle size. The quantitative analysis of the diamond sp3 and sp2 carbon amount was performed through the peak fitting of Raman spectra. It was found that finer diamond particles under a higher temperature and a lower pressure tend to produce more sp2 carbon; otherwise, they produce less. In addition, it is interesting to note that the local residual stresses measured using Raman spectra increase with the diamond particle size. The suspected reason is that the increased particle size reduces the number of contact points, resulting in a higher localized pressure at each contact point. The hypothesis was supported by finite element calculation. This study provides detailed and quantitative data about the densification of diamond powders and sp3 to sp2 transformation on the surface under HPHT treatment, which is valuable for the sintering of polycrystalline diamonds (PCDs) and the HPHT treatment of diamonds.

19.
Heliyon ; 10(5): e26871, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455537

RESUMO

The new sensible thermal energy storage materials were prepared by the sintering method with low-grade pyrophyllite mineral powders as main raw materials, Suzhou clay as the sintering aid and sulfite liquors as the binder. Further, the performance of sensible thermal energy storage under different size distributions and sintering temperatures was investigated and analyzed. The results show that the optimum particle size distribution is 50:15:35, the bulk density, thermal conductivity, and specific heat capacity are the largest values, which are 1.97 g cm-3, 0.87 W m-1 K-1 and 0.63 kJ kg-1 K-1, respectively. Other properties including porosity, water absorption, flexural and compressive strength and so on are optimal under this size distribution. When the sintering temperature is 1200 °C, the material has a good thermal conductivity of 0.89 W m-1 K-1 and a high bulk density of 2.05 g cm-3. Meanwhile, the sample with the used temperature from 50 to 900 °C has the best thermal energy storage capacity of 306.29 kWh·m-3.

20.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472822

RESUMO

The food processing industry is growing rapidly and producing large amounts of by-products, such as pomaces, which are considered as no-value waste and cause significant environmental pollution. The main by-products of fruit juice processing companies are apple and carrot pomaces, which can be used to create new functional food products. In the present study, the effects of particle size (PS) on the proximate composition, nutritional properties, and antioxidant activity of apple pomace flour (APF) and carrot pomace flour (CPF) were determined. Four different PS fractions, PS > 1 mm, 1 > PS > 0.71 mm, 0.71 > PS > 0.18 mm, and 0.18 > PS > 0.075 mm were used for the present study. Their vitamin, carotenoid, organic acid, and reducing sugar contents were determined using HPLC. The proximate compositions of each PS fraction of the AP and CP flours were determined using recommended international standard methods. DPPH, FRAP, and Folin-Ciocalteu methods were used to measure their antioxidant activity and total phenolic compounds, respectively. The moisture content (around 12.1 mg/100 g) was similar in all PS fractions and in both flours. The APF had lower protein (4.3-4.6 g/100 g dw) and ash (1.7-2.0 g/100 g dw) contents compared to the CPF, with protein contents ranging from 6.4-6.8 g/100 g dw and ash contents ranging from 5.8-6.1 g/100 g dw. Smaller particles, regardless of flour type, exhibited higher sugar and phenolic contents and antioxidant activity, while vitamins were more abundant in particles larger than 1 mm. In the APF, larger particles had a higher fiber content than smaller particles, while their fat content was the lowest. PS also had an impact on the results of the carotenoid contents. This study underscores the direct impact of PS on the distribution of sugars, crude fiber, fat, carotenoids, vitamins, total phenolic compounds, and antioxidant activity in pomaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...